

# **Pitahayas: introduction,**

# agrotechniques and breeding

### **Noemi Tel-Zur**

#### The French Associates Institute for Agriculture and Biotechnology of Drylands The J. Blaustein Institutes for Desert Research Ben-Gurion University of the Negev telzur@bgu.ac.il

VIIth International Cactus Congress. Agadir - Morocco October 19, 2010

### **Geographic distribution**

Hylocereus species

Known as Pitahayas, Vine cacti, Dragon fruits

**Species native to Central and South America** 

Mexico Costa Rica Panama Colombia Venezuela Etc.

### **Plant characteristics**



#### Climbing plants, roots can be detached from soil



#### Spine shape



#### Triangular stem



#### Wax in few species



#### **Nocturnal flowers**

**Open only one night – receptive 1 day** 



#### **Bat feeding on nectar and pollinating**



### **Genetic variability**



A DEL AL DECEMBER OF STREET, S

### Why Pitahayas as a fruit crop?

**1. Water use efficiency (WUE) - one order of magnitude higher than other crops (CAM plants)** 

2. Many uses: food (exotic and beautiful fruits), industrial, ornamental products and more

3. Exotic fruit in world markets – high value crop



### Agrotechniques

- 1- Manual pollination due to self-incompatibility and lack of natural pollinators
- 2- Acclimation to arid and semi-arid conditions
- **3-** Trellising climbing plants
- 4- Mechanization for removing spiny peel from yellow pitahaya

### **Others issues to solve:**

Irrigation, fertilization, pruning, short shelf-live

#### **Hand-cross pollination**



### **Orchard establishment:**

1-Net

**2- Trellis** 



#### Heat damage, 90% yield reduction



#### Chilling injury 4-5 °C

#### Nematode damage

#### **Excellent start, good yield and fruit size.**

**Destroyed the plants in years 4 & 5.** 





תוספת אקזוטית לקערת הפירות על שולחנך

פיטאיה ארובה ממעגן מיכאל

הפיטאיה הצהובה הוא פרי אשר מקורו במרכז אמריקה והינו חדש בארצנו. אמריקה והינו צמח הפיטאיה בשולי הגיונגל הטרופי. פריחת בשישיה מתרחשת בשיש "מלכת הלילה". בארץ גדלה הפיטאיה במורדות הכרמל במעגל מיכאל בבתי רשת.

#### טעמה של הפיטאיה משובח ובין תכונותיה המעולות גם. 🧉

O בעלת מרקם קטיפתי עשיר ועסיסי. O עשירה בויטמין C (mg ל-100 גרם). O עוזרת בהסדרת פעילות המעיים והקיבה.

#### את הפיטאיה ניתן להגיש ולאכול בממון דרבים.

ס לחתוך לחצאים ולאכול בעזרת כפית. ס לחרוץ חריץ בקליפה לאורך ולהוציא את הפרי בשלמותו. ס להוסיף קוביות פיטאיה לסלט הפירות. ס פיטאיה היא תוספת משובחת לגלידות ושייקים. ס מומלץ להגיש קר.

#### מידע על החנות הקרובה לביתך בטלפון: 053-737635

#### **Possible problems with the de-spining machine**

#### Red pitahaya orchard: 35 ton/ha



### Yellow pitahaya orchard: 15 ton/ha not profitable



# **First introductions**

 ✓ Hylocereus spp.: "red pitahaya" large and attractive fruit but lack taste, ripens in summer

*Hylocereus megalanthus:* "yellow pitahaya" delicious
but spiny peel, fruit inferior in
size and yield, ripens in winter







### **Breeding program**



### Goals : taste, size, yield, spineless, self-compatible, prolonged shelf-life

- Hylocereus spp.: "red pitahaya" diploid species
- H. megalanthus: "yellow pitahaya" tetraploid



#### Long and arduous process

#### **Red pitahaya hybrids - one day in the lab!**



Large variability in almost every aspect! Improved "summer" hybrids



#### Excellent in taste but spiny peel and low yields - "Autumn" cultivars







# New orchards with F<sub>1</sub> hybrids



### Yields: 25-35 ton/ha

500-1,000 m<sup>3</sup> water/ha/year

(about 10,000 m3 water/ha/year for other fruit crops)

# **Second generation of F**<sub>2</sub> hybrids **Preliminary evaluation**



#### Fruit morphology in hybrids

### **Other breeding projects**

### 1. "in situ" polyploid induction

#### 2. Production of homozygous Haploid-DH lines

### **3. Embryo rescue following interspecificinterploidy crosses**

### "in situ" polyploid induction

### The goal : obtain artificial red and yellow

### polyploid plants

### **Treatments:**

a-Vegetative lateral bud

**b-** Germinating seed

![](_page_23_Picture_6.jpeg)

![](_page_23_Picture_7.jpeg)

## Red pitahaya $2n \rightarrow 4n$

![](_page_24_Picture_1.jpeg)

**1- Bigger flower buds** 

2- Breaks self-incompatibility system

3- About 25% decrease in fruit weight!!!

# Yellow pitahaya 4n → 8n

![](_page_24_Picture_6.jpeg)

1- Very small fruits – lacking commercial value

#### **Production of homozygous Haploid-DH lines**

### Technique

![](_page_25_Figure_2.jpeg)

### This approach allows the production of

### haploid plants.

### Homozygous lines from heterozygous donors

### could be obtained through a single-step

### **Anther culture**

#### **Callus formation**

![](_page_27_Picture_2.jpeg)

#### **Embryoids formation**

![](_page_27_Picture_4.jpeg)

### **Ovule culture**

![](_page_28_Picture_1.jpeg)

### Abnormal plants - up to 5%

![](_page_29_Picture_1.jpeg)

### Hardening-off

![](_page_30_Picture_1.jpeg)

#### **Chromosome counts and FACS**

![](_page_31_Figure_1.jpeg)

Haploid plant with half number of

chromosomes / total DNA per cell

### We obtained haploid plants from anther

### and ovule culture in red and yellow

pitahayas

### Few samples.....

![](_page_33_Picture_1.jpeg)

![](_page_33_Picture_2.jpeg)

![](_page_33_Picture_3.jpeg)

#### More than 2,000 plants for evaluation

#### Yellow pitahaya "haploid" plants start to bloom

![](_page_34_Picture_1.jpeg)

### **Embryo rescue**

![](_page_35_Picture_1.jpeg)

### **Embryo rescue**

![](_page_36_Picture_1.jpeg)

This unique plant material offers us an opportunity

to identify elite lines in terms of yield, fruit quality,

resistance to disease, and drought tolerance,

enhances our potential to improve breeding efficiency

## Perspectives

### Thousands of plant for selection.

**Improved cultivars for GROWERS?** 

QTL's to map genome/ secondary metabolites

Elucidating genetic relationships among vine cactus species

# Development of new additional products

- Natural food colors
- Ornamental

#### **Hylocerenin Tolerant to Pasteurization**

![](_page_40_Picture_1.jpeg)

### **Ornamental uses**

![](_page_41_Picture_1.jpeg)

![](_page_41_Picture_2.jpeg)

![](_page_42_Picture_0.jpeg)

![](_page_43_Picture_0.jpeg)

![](_page_44_Figure_0.jpeg)

#### In summary, there is a wealth of genetic

variability in vine cacti waiting for us in the wild.

These plants have inherent High Water Use

**Efficiency (WUE) with tolerance to other stresses** 

These plants in addition to providing food and

feed, have industrial and medicinal uses

### Acknowledgements

#### BGU - Israel

A. Cisneros Dr. M. Dudai Dr. B. Schneider Dr. R. Garcia Prof. Y. Mizrahi Prof. G. Grafi

#### **Funding agencies**

**Binational Agricultural Research and Development Fund- BARD** 

**BGU internal found** 

#### ARO, Gilat Center - Israel

Dr. E. Raveh

#### **Cornel University - USA**

Prof. J. Doyle

# Thanks